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LAMINAR 

RESULTS FOR VARIABLE PROPERTY, 

BOUNDARY LAYERS IN WATER 

G. POOTS and G. F. RAGGETT 

(Received 15 July 1966 and in revisedform 24 October 1966) 

Abstract-Numerical solutions are presented for laminar forced heat convection in water for two different 
laminar boundary layer flow configurations. Experimental values (in the range 0-100°C) for the viscosity 
conductivity, specific heat and density are used. First the laminar forced convection heat transfer from a 
semi-infinite flat plate to a parallel stream is examined. Secondly the heat transfer by laminar flow about 
an infinite rotating disk is analysed. It is assumed that viscous dissipation, work done against compression 
and the gravitational buoyancy force are negligible. The relevant boundary-layer equations are solved 
numerically for isothermal plate (or disk) conditions. 

Flow and heat-transfer properties of these solutions, for both flow regimes. are given in graphical and 
tabular form for several combinations of plate and free stream temperatures. The theoretical results for the 
wall Nusselt number are correlated by expressions of the type Nu/Re* = A PP,Prt, where Re is the 
Reynolds number, Pr is the Prandtl number and the subscripts M and w indicate that main stream and wall 
fluid property values are taken. Consideration is also given to the use of effective reference temperatures 
at which fluid properties should be evaluated when a constant fluid property model is employed to deter- 

mine wall heat-transfer coefficients. 
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NOMENCLATURE 

Db coefficients [see equation (1. l)] ; 
radius of curvature [cm] ; 
specific heat at constant pressure 

[cal/gdegCl ; 
dimensionless skin friction co- 
efficient ; 
dimensionless moment co- 
efficient for the disk ; 

= u2$.?JL - T,), 
Eckert number ; 
dimensionless velocity functions ; 

= cwhv - P)X3/P2> 
Grashof number ; 
thermal conductivity [Cal/cm s 

degC1; 
torque on disk ; 
Nusselt number; 
pressure ; 
dimensionless pressure ; 
= c,, p/k, Prandtl number ; 
local heat flux ; 

mass flow per second ; 
= pu,,,x/p, Reynolds number ; 
cylindrical polar coordinates ; 
temperature PC]; 
velocity components for the plate 

Ccq/sl ; 
velocity components for the disk 

&$%ur co-ordinates. > 

B 

= s ;dy, 
In 

0 

Howarth-Dorodnitsyn y-vari- 
able [see equation (2*9b)] ; 

dimensionless I, z variables for 
the disk. 

Greek symbols 

YY constant ; 
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Subscripts 

J 
m, 
W, 
r, 
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boundary-layer thicknesses for 
the plate [see equations (2.19) to 

(2.2 l)] ; 
boundary-layer thicknesses for 
the disk [see equations (3.12) to 

(3.14)]; 
viscosity, [g/cm s] ; 
angle between resultant velocity 
and zonal direction for the disk ; 
shear stresses ; 
angular velocity [rad/s]; 

= (T - T,)/( T, - L), 
dimensionless local temperature ; 
= (T - 50”c)/50°c, 
dimensionless scaled tempera- 
ture ; 
density[g/cm3]; 

’ 
0 

dimensionless independent vari- 
ables for the plate and disk [as in 
equations (2.9a) and (3.2), respec- 
tively]; 
stream function. 

liquid film condition ; 
main stream ; 
wall condition ; 
reference condition. 

1. INTRODUCTION 

SEVERAL theoretical studies now exist on the 
determination of local and average heat-transfer 
coefficients in liquids taking into account the 
effect of variable viscosity. The major portion 
of this work dealt with non-isothermal forced 
convection flow inside vertical tubes. A brief 
survey was given in Poots and Rogers [l]. In the 
aforementioned report the fully developed 
laminar forced convection to water between 
heated vertical flat plates was discussed in 
detail using experimental data (in the range 
0-1OWC) for the viscosity, conductivity, specific 

heat and density. The main effect of variable 
fluid properties was on the mass flow and this 
was primarily produced by the rapid variation 
of viscosity with temperature. For example, mass 
flow rates in the case of Couette flow evaluated 
using the experimental data for water differed 
by as much as 25 per cent from those evaluated 
using a constant fluid property model based on 
physical properties taken at the arithmetic mean 
temperature of the plates. Discrepancies in the 
case of Poiseuille flow were at most 16 per cent. 
However, in [ 11 the heat flux across the channel 
was constant and independent of the flow rate, 
and so no new information was obtained on the 
effects of variable viscosity, etc., on wall Nusselt 
numbers. 

It is the purpose of this report to examine 
some non-isothermal laminar flows in water, 
where there is appreciable coupling between 
the momentum and thermal energy boundary- 
layer equations. In view of the computational 
difficulties incurred when due account is taken 
of variable physical properties it is clear that 
results can most easily be obtained on con- 
sidering similarity solutions of these equations. 
Thus in Section 2, the laminar boundary-layer 
equations are solved for the velocity and tempera- 
ture distribution in the vicinity of an isothermal 
flat plate aligned parallel with a uniform water 
stream of infinite extent for several combinations 
of plate and free stream temperatures. In Section 
3 the rotationally symmetrical flow and heat 
transfer in the presence of an isothermal infinite 
rotating disk is examined. In both flow conligura- 
tions the momentum and thermal boundary 
layer equations are supplemented by certain 
fluid property relations for the density, specific 
heat, viscosity and conductivity. Except at very 
high pressures, or at conditions near the critical 
point, these properties for water may be taken 
as equal to saturated values at the appropriate 
temperatures. The data for saturated values are 
taken from tables compiled by Mayhew and 
Rogers [2]. In cgs units these experimental 
values are adequately represented, as is dis- 
cussed in [l], by algebraic expressions in the 
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form : 

p = f Ai @‘, c* = f Bi o’, 
i=O i=O 

~ = eXp(~ CiO'), 
(1.1) 

i=O 

k = exp(f Die’), 
i=O 

where 0 = (T - 5O”C)/5O”C; the numerical 
values of the Ai, B, Ci and Di are listed in ref. [l]. 

2. THE BOUNDARY LAYER ON AN 

ISOTHERMAL FLAT PLATE 

Water with uniform free stream velocity u, 
and temperature T, flows parallel to an iso- 
thermal vertical flat plate, defined by y = 0, 
x 2 0, in the direction of increasing x; the plate 
temperature is Tw Let u and o be the velocity 
components in the x and y directions respectively 
and T be the local temperature field. 

The governing equations for conservation of 
mass, momentum and thermal energy in the 
resulting boundary-layer flow are, respectively : 

(2.1) 

and 

/x,(“:+,$) =$$). (2.3) 

Together with the fluid property relations (1.1) 
the above equations (2.1) to (2.3) must be solved 
subject to the boundary conditions : 

T = T,. u=u=o 

at y = 0, X > 0, 

T = T,, u=u m ! 

and 

at x=0, y > 0, 

t 

(2.4) 

T -, Tm, u + u, 

as y-,co. J 

In equations (2.2) and (2.3) the gravitational 
buoyancy force, viscous dissipation and work 
done against compression have been neglected. 
It can be shown qualitatively on examination 
of the full equations of motion for a viscous 
heat conducting compressible fluid that the 
effect of the gravitational buoyancy force is 
negligible if: 

$< 1, 
m 

(2.5) 

where the Reynolds number Re, = p,,,u,x/p,, 
and the Grashof number Gr, = gp,@, - p,) 
x3/&. Similarly the effects of viscous dissipation 
and work done against compression are negli- 
gible if: 

Pr, E, % 1, (2.6) 

where the Prandtl number Pr, = cp, Qk,,,, and 
the Eckert number E, = u,f,/[Jc,(T, - Tmi]. 
For water, under realistic flow conditions, the 
specifications (2.5) and (2.6) are satisfied for 
moderate speeds and large temperature differ- 
ences. 

Upon introducing a stream function I(/ de- 
lined by 

p”=pmay’ 
w 

pu = - pm= (2.74 

and the dimensionless temperature distribution 
0 defined by : 

o= 
T - T, 

T, - T, 
(2.7b) 

the required similarity solution (see, for example, 
Stewartson [3]) of the boundary-layer equations 
(2.1) to (2.3) is in the form : 

* = (2 CL, urn xlPm)*ftrl)~ 

0 = O(q). I (2.8) 

Here q is the Blasius similarity variable defined 

by 
? = Y (Pm &?I/2 Ai x)+3 (2.9a) 

where Y is the Howarth-Dorodnitsyn variable : 
Y 

Y= 
1 

Fdy . 
P, 

(2.9b) 

0 
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The velocity field is related tof by: 

and 

u = u,df/dq > 

Accordingly equations (2.1) (2.2) and (2.3) 
reduce to the following ordinary differential 
equations : 

+fKO, 
dv= 

(2.11) 

and 

+Pr_CPf%== 0. (2.12) 
cp, d? 

The fluid property relations (1.1) take the simple 
form : 

and 

k = k(8 ; T,. T,). 

where, for example : 

The boundary conditions are : 

(2.13) 

f =df/dq = 8=0 at q=O, 
(2.14) 

dfldrl-+ 1, o-+1 as ~-+co.j ’ ’ 

To date (2.1 l), (2.12) subject to (2.14) have been 
solved on the basis of a constant fluid property 
model. It is not unreasonable to assume for quite 
small temperature differences, (T, - T,), that 
the physical properties of the liquid are indepen- 
dent of the temperature. The relevant values can 

then be taken at a suitable reference temperature. 
If the free stream temperature is chosen as this 
reference temperature equations (2.11) and 
(2.12) are replaced by 

f”’ + ff” = 0, ,” + Pr,f 0’ = 0, (2.15) 

where the prime denotes differentiation with 
respect to q. Details of the classic Blasius- 
Pohlhausen solutions of (2.15) subject to (2.14) 
are given in Stewartson [3] for Prandtl numbers 
in the range 0.6 < Pr, < 15. However, for even 
moderate temperature differences the use of the 
above type of model based on the reference 
temperature T, must lead to serious errors in 
the prediction of liquid flow and heat-transfer 
characteristics. For example, in the specific case 
of water the Prandtl number is a monotonically 
decreasing function varying from 13.621 to 
1.737 in the range 0-100°C. Later in this section 
it is shown that an accurate prediction for the 
wall heat-transfer coefficient may be obtained 
using a constant fluid property model based on 
an effective reference temperature deduced 
from the computed variable fluid property 
results. 

Solutions 
Numerical solutions of the variable property 

equations (2.11) to (2.14) have been obtained 
for T, = 0, 10, 40, 70 and 100°C when T, is 
either 0, 10, 40, 70 or 100°C. The integrations 
were performed using Gill’s modification of the 
Runge-Kutta method. An iterative scheme was 
used for the determination of the unknown 
initial values f “(0) and e’(0); these have been 
rounded off to four decimals and are listed in 
Table 1. 

Velocity and thermal profiles 
Representative dimensionless velocity pro- 

tiles for the extreme cases (T,, T,) = (100, 0), 
(0, 0), (100, 100) and (0, 100) are given in Fig. 1; 
the associated temperature Vprotiles are given in 
Fig. 2. As the similarity variable u is defined 
using the reference temperature T, it is only 
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Table 1 

601 

T, T, f “(0) B’(0) S,Re$x G,Rei/x G,Ref$Jx NuJRe$, C,Rei Nu/CfRe, 

0 
10 
40 
70 

100 

0 
10 
40 
70 

100 

0 
10 
40 
70 

100 

0 
10 
40 
70 

100 

0 
10 
40 
70 

100 

0 

10 

40 

70 

100 

0.4696 1.1421 1.7208 06641 10444 0.8076 0.6641 1.2161 
0.6218 1.1916 1.5699 0.6442 1.0214 0.8425 0.6442 1.3080 
1.1169 1.3194 1.2208 0.5743 09342 0.9258 0.5743 1.6122 
1.6041 1.4361 0.9870 0.5032 0.8364 0.9929 0.5032 1.9732 
2.0567 1.5534 0.8265 0.4396 0.7427 1.0523 0.4396 2.3940 

0.3533 0.9757 1.8767 0.6820 1.0646 0.6900 06820 1.0117 
04696 1.0130 1.7208 0.6641 1.0444 0.7163 0.6641 1.0786 
0.8557 1.1157 1.3585 0.6006 0.9665 0.7829 06006 1.3036 
1.2469 1.2124 1.1121 0.5339 0.8768 0.8383 0.5339 1.5702 
1.6195 1.3117 0.9404 04725 07884 0.8886 0.4725 1.8808 

0.1869 0.7001 2.2673 0.7269 1.1172 0.4989 0.7269 0.6863 
0.2505 0.7196 2.1066 07137 I.1028 0.5127 0.7137 0.7183 
0.4696 0.7753 1.7208 0,664 1 10444 0.5482 0.6641 0.8255 
0.7046 0.8358 1.4466 06079 0.9724 0.5823 06079 0.9578 
0.9401 0.9016 1.2491 05526 0.8968 0.6155 0.5526 1.1138 

0.1198 0.5645 2.5589 0.7637 1.1624 04083 07637 05346 
0.1613 05744 24007 0.7534 1.1514 04154 0.7534 0.5513 
0.3075 0.6070 2.0090 0.7128 1.1048 0.4356 0.7128 0.6111 
0.4696 06478 1.7208 0.664 1 I.0444 0.4581 0.664 1 0.6897 
0.6370 0.6957 1.5066 0.6138 0.9780 0.4820 0.6138 0.7853 

00851 0.4811 2.7803 0.7963 
0.1149 0.4855 2.6279 0.7878 
0.2215 05046 2.2400 0.7535 
@3423 0.5335 1.9452 0.7104 
04696 0.5689 1.7208 0.6641 

1.2037 0.3551 0.7963 04459 
1.1949 0.3583 0.7878 0.4548 
1.1562 0.3696 0.7535 0.4905 
1.1039 03850 07104 @5419 
1.0444 04023 0.6641 06058 

permissible to compare profiles with the same 
Reynolds number Re,.* 

For the two velocity profiles specified by 
T, = 0°C and T, = 0 and lOO”C, respectively, 
it is obvious that as the plate is heated (or as T, 
increases) the coefficient of viscosity will be 
reduced in that part of the boundary layer close 
to the wall. The tangential shear stress exerted 
by the plate on the adhering layer of fluid is 

* Of course the velocity protiles given in Fig. 1 can be 
plotted against an 1, based on a different reference tempera- 
ture T, where q, is ~,,(p~,,,/~&*. If, for example, T, is 
chosen as this reference temperature then the difference 
between the variable fluid property profile and the related 
constant fluid property profile (when T, = Td becomes 
much smaller near the wall than that which occurs in Fig. 1, 
but becomes larger at the outer edge of the boundary layer. 
Even if effective reference temperatures are introduced no 
real advantages are to be gained in the graphical representa- 
tion of the results. 

decreased producing an increase in the velocity 
component parallel to the plate (see Fig. 1). 
Quantitative information on these trends is 
also available in Table 1. For T, = 0°C an 
increase in T, results in an increase in f”(0) 
producing a steeper velocity profile and in fact 
there is, as expected, a corresponding decrease 
in the skin friction coefficient 

An increase in velocity enhances heat transfer 
by convection producing the observed increase 
in the dimensionless temperature profiles for 
(T,, T,) = (100, 0) and (0, 0) as shown in Fig. 2. 

In the second two velocity profiles with 
T, = 100°C and T, = 0 and lOO”C, respectively, 
cooling the wall obviously produces a decrease 
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FIG. 1. Dimensionless velocity profiles for the flat plate. 

in velocity as implied by the fact that the shear 
stress exerted by the plate increases with decreas- 
ing temperature. 

Again from Fig. 2 it follows that, for flows 
with the same Re,, the thermal boundary-layer 
thickness decreases with heating the plate. 

It is, perhaps, interesting to point out that a 
heated wall velocity profile, as in the case 
T, = 100 and T, = 0 shown in Fig. 1, resembles 
closely the shape of the velocity profile occurring 
in an isothermal two-dimensional boundary 
layer with favourable pressure gradient. Simi- 
larly a cooled wall velocity profile, as in the case 
T, = 0 and T, = 100 shown in Fig. 1, resembles 
the type of velocity profile occurring in an iso- 
thermal two-dimensional boundary layer with 
an adverse pressure gradient. Moreover, in the 
cooled wall profile there is a point of inflexion 
indicating that this flow is probably unstable 
even at large Reynolds number. 

Boundary-layer thickness 
It is useful to consider some overall measures 

of the fluid boundary-layer thickness. These 
are the displacement thickness : 

the momentum thickness : 

6, =/z(l -;)dy. (2.17) 

FIG. 2. Dimensionless thermal profiles for the flat plate. 
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and the energy thickness : 

I,= jz(i -9 dy. (2.18) 

In terms of the new variables f and 8 in the 
(x, II) plane the above quantities are transformed 
to dimensionless form as follows : 

e=(j2)[$‘(l -51 dv, (2.19) 

&Re$ 
x 

= (J2) z f”(O), (2.20) 
mm 

and 
m 

6,Re+ 
2 = (,/2) 

x s 
f’[l - (f’)‘] drj. (2.21) 

0 

Note that the expression for G,Re;)Jx as given in 
(2.20) is derived from the definition (2.17) by 
making use of the differential equation (2.11). 
As in the constant fluid property flow model this 

h L 
loo 

0 20 40 an a0 loo 

G 
mG, 3, Boundary-layer thicknesses for the flat Plate. 

6, &&lx, _.-. -. a2 Reilx, ----- 63 Reilx. 

result shows that there is a simple relationship 
between the momentum thickness d2 and the 
skin friction coefficient C,, namely, 6, = C,x. 

Numerical values of S,Re$, G,Rek/x and 
&Ret/x are given in Table 1, and also in 
graphical form in Fig. 3 for the extreme cases 
T, = 0 and 100°C. All these quantities have the 
same general trend, i.e. for fixed Re, (or T,) they 
decrease with increasing plate temperature. 

The deficit in the actual mass flow rate due to 
the effect of viscosity in the boundary-layer is 
~~u,Gi. It is interesting to compare some results 
for this quantity, taking specified values of 
T, and T,, with the approximate results evalu- 
ated using a constant fluid property model 
based on a reference film temperature T, = 
%T, + T,). The relevant ratio P,,,u,,,~ ,/(p6,)f~, = 
1.14 and 0.87 for the cases (T,,,, T,) = (0,100) and 
(100, 0), respectively. 

Shear stress 
The local shear stress at the plate is: 

rw = PW($)o = P-2 ()tu.I..(0). (2.22) 

The related dimensionless skin friction co- 
efficient : 

C 
J 

= PL,(W~Y)o = 

fPlJ4 

(J2) P&vf”(0)~ 

PA,, Re;) 

Values of C/&3, 
expected there is a 
increased. 

are given in Table 1; as 
decrease in CJRef, as T, is 

(2.23) 

Heat-transfer relations 
The characteristic quantity representing the 

local heat transfer at the plate is Nu/Re$,, where 
the Nusselt number 

Nu = x g o (T, - T,). 
( )I 

In terms of the dimensionless temperature 
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gradient at the plate : 

values of this quantity are given in Table 1. The 
local rate of heat transfer to the plate per unit 
surface area is given by the relation : 

4’ -k,(T,- T,)? g 0 . (2.25) 

The method of least squares gives the “best 
fit” for the data on N~/~e~ listed in Table 1 as : 

Nu,Re$ = 0.3402 Prg4366 Pr;“‘09685, (2.26) 

with a r.m.s. error of 0.42 per cent. In the limiting 
case when Pr, = Pr, expression (2.26) reduces 
to Nu/Re$ = 0.3402 Pr$33g8, which is in reason- 
able agreement with the classica Blasius- 
Pohlhausen constant fluid property result 
Nu/fie$, = 0.3320 P& as given by Eckert and 
Drake [4]. Using numerical values of the 
dimensionless temperature gradient 0’(O) found 
on integration of (2.15) for Pr, = t(l)14 gives, 
for the constant fluid property model, the “best 
fit” as Nu~Re~ = 0.3334 PrE33q4, with r.m.s. 
error of 0.04 per cent. 

An alternative approach to the correlation 
of the theoretical data for N~/Re~ is to deter- 
mine effective reference temperatures at which 
fluid properties should be evaluated when a 
constant fluid property model is employed. 
Let the model fluid have an effective reference 
temperature 7; = T, -I- y(T, - T,), with 
0 $ y < 1. It is required to find y such that : 

Nu/Rej$, == O-3334 Pr~‘33Q4, (2.27) 

and to make the resulting error as small as 
possible for all of the various wall and main 
stream temperatures considered. On performing 
the necessary computations it was established 
that the cooled wall data can be represented by 
(2.27) with y = 0.20 to within an accuracy of 
&- 1-g per cent. However, on examination of the 
heated wall data the most probable value of y is 
less than zero and this result is obviously un- 
acceptable. This objection to the use of a 

constant fluid property model for correlating 
data on Nu/Rei is removed by considering 
correlations involving Neared, where Ref is 
the film Reynolds number. Re-examination of 
the data yields the result: 

NujRej 32= O-3334 Pr,0’3394, (2.28) 

where y = 060 for the heated wall results and 
y = 069 for the cooled wall rest&s, respectively. 
The modulus of the resulting error in the use of 
(2.28) for the particular values of y was less than 
1.5 per cent for the complete range of wall and 
main stream temperatures considered. 

For completeness, the Reynolds analogy 
factor N~~C~Re~ has been included in Table 1, 

3. HEAT TRANSFER FROM A 
ROTATING DISK XN WATER 

The axisymmetric laminar flow about a 
rotating disk situated in a large body of quiescent 
fluid was first analysed by von K&m&n [S] and 
Cochran [6], using a similarity solution which 
is a solution both of the full Navier-Stokes 
equations and of the appropriate boundary- 
layer equations of the problem. Recentfy Rogers 
and Lance [7] have investigated in more detail 
the general problem of rotationally symmetric 
flow of a viscous fluid in the presence of an 
infinite rotating disk. 

The heat transfer from such a rotating disk to 
a model fluid with constant fluid properties has 
been studied by Millsaps and Pohlhausen [8] 
for Prandtl numbers in the range 

0.5 Z$ (cJk,)Pr sz 10; 

Sparrow and Gregg [9] give numerical results 
applicable to any Prandtl number. For gases 
the effects of compressibility were examined by 
Ostrach and Thorton [lo] assuming a model gas 
with Pr = 0.72 and a linear variation of viscosity 
with temperat~e. A detailed review on the 
rotating disk and allied mass- and heat-transfer 
problems has been given by Dorfman [ 1 I]. 

The flow con~guration to be studied is that 
of an infinite circular disk in the horizontal 
(r, Q-plane rotating in water with constant 
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angular velocity Q about the z-axis. The disk is 
maintained at uniform surface temperature T, 
and the bulk or quiescent fluid is at temperature 
TW As in references [5-lo] the relevant similarity 
solution is given in the form : 

r = (AJP,Q)‘R~ 
Z = (PJPIJW~ 

4 = @%,/P,)*RW). 

k3 = W,,,/P,,?R G(Z), (3.1) 

u* = m4n/P*)+~(Z)> 

P = &QW), 

@Z) = (T - Tvmm - T,). I 

This similarity solution is valid provided the 
buoyancy force, viscous dissipation and work 
done against compression are negligible. On 
examination of the full equations for a viscous 
heat conducting compressible fluid it can be 
shown that the effect of the gravitational body 
force is negligible if: 

Gr,,,,/Rei < 1 (3.2a) 

and, moreover, the effects of viscous dissipation 
and work done against compression are negli- 
gible if: 

Pr, E, < 1. (3.2b) 

Occurring in (3.2) are the following dimension- 
less groups: the Reynolds number Re, = 
p,,,r2Q/p,,,, the modified Grashof number 

Gr, = g PAP, - pJr3 

dl ' 

the Eckert number : 

E, = 
r2Q2 

Jc,(Tw - Tm) 

and the Prandtl number Pr, = p,,,cJk,,,. 
In terms of the Howarth-Dorodnitsyn vari- 

able: 

rl= 5 5 dZ, 
Pltl 

0 

(3.3) 

and the new variables : 

f = F, g = G, h=EH, (3.4) 
Pm 

the governing equations expressing conserva- 
tion of mass, momentum and thermal energy 
become : 

2f + h’ = 0, (3.5) 

‘= f’+hf’-g2, (3.6) 

= 2fg + hg’, (3.7) 

and 

(3.8) 

where the dash denotes differentiation with 
respect to r,r. The fluid property relations are 
given by (2.13). The boundary conditions which 
must be satisfied at the disk are 

u, = 0, ug = rS2, u, = 0, T = T, 

and, in terms of the similarity variables (3.1) and 
the new variables (3.3) and (3.4), these are 
equivalent to : 

f (0) = 0, cl(O) = 1, 
h(0) = 0, e(0) = 0. (3.9) 

At infinity, the fluid has both zero angular and 
radial velocity and is at constant temperature 
T,, hence 

f(c0) = 0, g(m) = 0, e(o3) = 1. (3.10) 

The dimensionless pressure gradient dP/dZ 
can be evaluated from the equation : 

dP 

E= Pm&n 
21?_fr+k!-_ [E(h'- fj - hh’ 

once the solution of the system of differential 
equations (3.5) to (3.10) is known. However, the 
actual dynamic pressure change across the 

2Q 
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boundary layer is small and of 0(&2) and is 
therefore negligible within the boundary-layer 
approximation. 

The above similarity solution contains the 
usual features of boundary-layer theory. The 
similarity solution is also applicable, within the 
framework of boundary-layer theory, to the 
flow in the neighbourhood of the nose of an 
arbitrary solid of revolution rotating about its 
axis of revolution in a quiescent fluid ; the surface 
temperature is maintained at T,# T, the tem- 
perature of the fluid, and the axis of symmetry 
taken to be the vertical axis. In this flow con- 
figuration the boundary-layer equations are as 
given in [3], except that the meridianal momen- 
tum equation must include the corresponding 
component of the gravitational buoyancy force; 
the pressure along a normal to the surface is 
now constant. If a is the radius of curvature of 
the nose the condition for neglecting viscous 
dissipation is given by (3.2b) with I = a ; 
however, the condition for neglecting the gravi- 
tational buoyancy force as given by (3.2a) must 
be replaced by 

gj+ 1, 
m 

where Y = a. 
The physical interpretation of the constant 

fluid property flow governed by the Von 
Karman similarity solution is well known. The 
disk acts as a centrifugal pump. At any plane 

parallel to the disk (and lying within the 
boundary layer) the fluid is moving in spiral 
paths away from the central axis of rotation. 
Consequently, to maintain conservation ofmass, 
there is a uniform normal inflow at the outer 
edge of the boundary layer. In the following the 
variable fluid property results obtained for 
water are now discussed. 

Solutions 
The seventh-order boundary-value problem 

(3.5) to (3.10), and including (2.13), has been 
solved numerically by the method briefly de- 
scribed in Section 2 for T, = 0, 10,40,70, 100°C 
with T, = 0 and 100°C respectively. The un- 
known characteristics f’(O), g’(O), 0’(O) and 
h(co) have been rounded off to four decimals 
and are listed in Table 2. 

Velocity and thermal profiles 
Dimensionless velocity and thermal profiles 

for the cases (T,,,, T,) = (0. 100) (100, 100) 
(0, 0) and (100, 0) are given graphically in 
Figs. 4 and 5, respectively ; Fig. 6 gives graphic- 
ally the resultant horizontal velocity 

UT = (u,’ + I&+ 

and its angle 

t = tan- ’ (24,/u,) 

to the ‘zonal direction. 
On comparing velocity profiles having the 

same Reynolds number Re, it is seen from 

Table 2 

Tw K, /‘(O) 

0 loo 0.1446 
10 0.1945 
40 03109 
70 0.4154 

100 0.5102 

s’(O) P(O) 

-0.1328 0.5443 
-0.1766 0.5391 
- 0.3225 05266 
-0.4718 05235 
-0.6159 0.5278 

h(m) 

- 1.0105 
- 1.0023 
- 0.9690 
- 0.9274 
- 0.8845 

At Rei/r AZ Rei,lr A, Re$Jr NuRe; f C,, ReiJ2n 

0.0664 1.2224 0.2197 0.568 1 - 0.8790 
0.0658 I.1404 0.2140 0.5626 - 0.8561 
0.0629 0.9370 0.1939 0.5454 - 0.7758 
0.0587 07859 0.1731 0.5343 - 0.6924 
0.0541 0.6725 0.1540 0.5278 -0.6159 

0 0 0.5102 -0.6159 1.2810 - 0.8845 0.0541 D6725 0.1540 1.2810 -0.6159 
10 0.6088 -0.7878 1.2836 - 0.8660 0.0522 0.6028 0.1442 1.2835 - 0.5771 
40 0.8586 - I.2770 1.2726 - 08088 0.0543 0.4483 0.1160 1.2629 - 0.4643 
70 1.0676 - 1.6880 1.2701 - 0.7493 0.0383 0.3520 oG935 1.2418 - 0.3744 

100 1.2673 - 2.0397 1.2862 -0.6933 0.0324 0.2889 0.0770 1.2322 - 0.3083 
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reduction in the zonal component of the shearing 
stress exerted by the disk on the neighbouring 
layer of fluid. Consequently, there is a reduction 
in the centrifugal force induced by the disk 
resulting in a reduction in the radial component 
of velocity and also in the axial inflow at the 
edge of the boundary layer. The resultant 
horizontal velocity component, as seen from 
Fig. 6. is now obviously decreased on supplying 

0 I 2 3 4 

FIG. 4. The velocity functions 1; 9, h for the rotating disk. 
----A _____ 9 ,_._. -.h; l:‘& = loo,‘&, = 0; 

2:T, = 0, T, = 0 or T, = 100, T, = 100;3:T, = 0, 
T, = 100. 

FIG. 6. Dimensionless tangential velocity U&Q and angle E. 

Dimensionless thermal profiles for the rotating disk. 

Fig. 4, for (T,, T,) = (0, 0) and (100, 0), that an 
increase in the disk temperature produces a 
decrease in zonal velocity. Obviously heating 
the disk reduces the viscosity and so causes a 

heat to the disk; moreover, the angle E is 
increased producing a more diffuse spiral motion. 
Returning to Fig. 4 it is significant that as heat 
is supplied to the disk the maximum radial 
velocity, although reduced slightly in magnitude, 
is located closer to the disk. Near the disk 
heating produces a slight increase in axial 
inflow, whereas at the outer edge of the boundary 
layer there is an appreciable decrease since the 
latter is controlled by the overall reduction in 
radial outflow. 

As seen from Fig. 5 the dimensionless thermal 
profiles for the cases (T,, T,) = (0, 0), (100, 0) 
nearly coalesce. This implies that wall heat- 
transfer coefficients for the rotating disk are 
insensitive to changes in T, for fixed T,. Clearly 
from equation (3.8) the shape or exponential 
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decay of these profiles is determined primarily 
by the fixed magnitude of Pr,. The observed 
small decrease with increasing T, is evidently 
due to minor local variations of the inflow near 
to the disk. 

Briefly, the actual trends, as in the cases (T,, 
T,) = (100, 100) (0, lOO), for cooling the disk 
are as follows. Cooling produces an increase in 
the zonal shear stress at the disk leading to 
increased radial outflow balanced by a corres- 
ponding increase in the inflow. As seen from 
Fig. 6 there are associated increases in the 
resultant horizontal component of velocity and 
moreover the spiral motion becomes more 
compact. Once again the thermal profiles are 
controlled by Pr, and are insensitive to changes 
in T, 

Note that the mass of fluid pumped outwards 
from one side of the disk per second (across a 
semi-infinite cylinder of radius r, z > 0) as a 
result of the centrifugal effect is 

= xr3pmS2Re;* [- h(a)]. (3.11) 

This quantity is also the actual mass flow per 
second which flows axially towards the disk. 

Boundary-layer thicknesses 
The following dimensionless length scales 

have been evaluated as measures of the fluid 
boundary-layer thickness on the rotating disk. 
These are : 

m m 

A, = p”,’ s pd --rRe;f 
p Q2r2 ’ - f 

fZdy, (3.12) 
m 

0 0 

P co 

A, = 
s 

pG/r 
Tdq = rRe;* 
P& r f 

g’dq, (3.13) 

0 0 

and 
00 m 

A, = 
s 

PWe ---d 
pmr2Q2 ’ - 

- rRe,* 
s 

fgdq. (3.14) 

0 0 

They are in fact associated with the total rate 
of change of radial momentum across a cylinder 
of radius r, the centrifugal force at radius r and 
the rate of change of zonal momentum at 
radius r, respectively. Numerical values of 
A, Reglr, A, Ret/, A, Re$/r are given in Table 
2. As expected. these quantities decrease with 
increasing T, for fixed T, and Re,. 

Torque and moment coeficient 
The approximate torque on a finite disk of 

radius r is now evaluated. The torque on one 
side is : 

M = - 27~ 5 r’z,, dr, 
0 

(3.15) 

where the zonal shear stress is : 

The dimensionless moment coefficient is de- 
fined as 

2M 
c,=-= 2xRe; 3 e g’(0). (3.16) 

m 

Values of C,Re$,/2n: are given in Table 2. When 
T, = 0°C and Re, is fixed there is an overall 
decrease of 50 per cent in C, as T,,, increases 
from 0 to 100°C. 

Nusselt number 
The Nusselt number is defined as : 

Nu=r f? 
0 

aZ = !Kw - Td 
z 0 

The characteristic quantity 

Nu/Re;) = fi 8’(O) 
Pill 

is given in Table 2. 
The method of least squares gives the “best 

tit” for this data as : 

Nu/Re$ = 0.4187 PrE’02861 PrE4048 (3.17) 

with a r.m.s. error of 0.22 per cent. for the constant 
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fluid property model using T, as the reference 
temperature and computed solutions for 
Pr, = l(l)14 the “best fit” was: 

Nu/Re* = 0.4127 Pro’44o4 m m (3.18) 

with a r.m.s. error of 0.45 per cent. The result 
(3.17) is in good agreement with (3.18) when 
Pr, = Pr,. Note that (3.17) indicates the weak 
dependence of NulRe;), on Pr, 

Finally reference temperatures are proposed, 
as in Section 2, for a related constant fluid 
property model. The variable fluid property 
data for Nu/Re) can be evaluated using constant 
fluid property results, namely, 

NulRef -h 0.4127 PrF’4404, (3.19) 

where property values are taken at 

T,= L+Y(L- L) 

with y = 0.41 for the heated wall and y = 044 
for the cooled wall, respectively. The modulus 
of the maximum error involved in the use of 
(3.19) for both values of y was less than 0.3 per 
cent for the particular wall and main stream 
temperatures considered. 

4. CONCLUDING REMARKS 

In the previous two sections results have 
been obtained on the effects of variable fluid 
properties on flow and heat transfer in water. 
These solutions of the laminar boundary-layer 
equations are in fact variable fluid property 
.generalizations of well known constant fluid 

property similarity solutions. Section 2 has now 
been extended to include solutions of the laminar 
layer equations with an adverse pressure 
gradient. By numerical integration of the relevant 
partial differential equations it is hoped to 
present information on the effect of variable 
fluid properties on non-isothermal laminar 
flows with boundary-layer separation. 
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R-On prCsente des solutions numtriques pour la convection for&e laminaire de la chaleur dans de 
I’eau pour dew: configurations diffbrentes de couche limite laminaire. On emploie les valeurs expbi- 
mentales (dans la gamme de 0-10C°C) pour la viscositt, la conductivitk, la chaleur sp&cifique et la masse 
volumique. On examine d’abord le transport de chaleur par convection for&e laminaire ii partir d’une 
plaque plane semi-intinie vers un koulement parall&le. On alyse ensuite le transport de chaleur par 
boulement laminaire au voisinage d’un disque tournant infini. On suppose que la dissipation par viscositC, 
le travail de compression et la force volumiquedue & la pesanteur sont nCgligeables. Les Lquations corres- 
pondantes de la couche limite sont rtsolues numkriquement pour des conditions de plaque (ou de disque) 
isotherme. 

Les propriCtb d’6coulement et de transport de chaleur de ces solutions sont donntes, pour les.deux 
rtgimes d’tcoulement, sous forme de graphiques et de tableaux pour plusieurs combinaisons de temptra- 
tures de plaques et d%coulement libre. Les rbsultats thtoriques pour le nombre de Nusselt parittal sont 
reprCsentCs par des expressions du type: 

NulRe* = APrc Pri, 
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Pr est le nombre de Prandtl et les indices infkrieurs m et w indiquent 
que I’on a pris les valeurs des propriCtts du fluide dans I’&oulement principal et rl la paroi. On tiendra 
compte aussi de I’emploi de tempkratures de r6fkrence effectives auxquelles les propriCt.3 du fluide 
devraient &tre calcultes lorsqu’on utilise un modtYe g propriCtCs constantes de fluide pour dtterminer les 

coefficients de transport de chaleur g la paroi. 

Zusammenfassung-Numerische Lijsungen werden angegeben fiir den Wlrmelbergang bei laminarer 
Zwangskonvektion in Wasser, bei verschiedenen Anordnungen der laminaren Grenzschichtstr6mung. 
Fiir die Zlhigkeit, die Leitfihigkeit, die spezitische WLrme und die Dichte werden Versuchswerte (im 
Bereich &lOO”C verwendet. Erstens wird der WBrmeiibergang bei laminarer Zwangskonvektion an 
einer halbunendlichen, ebenen Platte, die parallel aggestriimt wird, untersucht. Zweitens der Wlrmeiiber- 
gang bei laminarer Striimung an einer unendlichen rotierenden Scheibe analysiert. Es wird angenommen, 
dass die Dissipationsfunktion, die Kompressionsarbeit und der Auftrieb vernachllssigbar sind. Die 
entsprechenden Grenzschichtgleichungen werden numerisch fiir die isotherme Platte (oder Scheibe) 
gel&t. 

Die Striimungs- und Wgrmeiibergangseigenschaften dieser Lijsungen beider Striimungsformen sind 
in Diagrammen und Tabellen fiir verschiedene Kombinationen von Platten und Freistromtemperaturen 
wiedergegeben. Die theoretischen Ergebnisse fiir die Nusseltzahl sind durch Ausdriicke von der Art 
NuiRef = A Pr”,Pri korreliert. wobei Re die Reynoldszahl und Pr die Prandtlzahl darstellt. und die 
Indices m und w angeben ob die Eigenschaften des Hauptstromes oder der Wand zugrundegelegt sind. 
Ebenfalls beriicksichtigt wurden effektive Bezugstemperaturen, bei welchen die Stoffwerte der Fliissigkeit 
einzusetzen sind, wenn zur Bestimmung der W&meiibergangskoefzienten ein Model1 konstanter Fliissig- 

keitstemperatur verwendet wird. 

,~HHOTUIIWSI--IIpeRCTaBntrHM 'l~It:JleHHbIt2 ~'t'lilell~lK ,iJlK AISyx JlaMLIH3~HMx llOrp3HHWblx 

CJIOeB pa:lJll4YHOfi KOH@U'YpaqMM npll BblH~ltc~eHilO~ KOH3eK~HH B nOTOKe BOAId. HClIOJIb- 

3yIOTt'H 3KCnepHMeHTaJIbHbIe BlIa~eHIifl (3 1liana3OHe oily" RRBKOCTII, TeIIJIOnpOBO~- 

HOCTII, j'AeJIbHOti TenJIOTbI CI IIJIOTHOCTII. BO-IIepIlbIX, l4t:CJIe~OBa;rCK nepeHOC TenJI3 B JlaMlil- 

IIapHOM nOTOKe npl4 BblHj'?KAeIlllO~ KOIlBeKI~I414 OT nOJI~6eCKOHeqHOti IIJIOcKOti IIJIaCTIiIlbI Ii 

napanneabeoM,v nOTOKy. Ho-BTopbIx, aKanwwpo3ancsi nepeKoc TenJIa namaaapeblM IIOTOKOM 

143 CiecKoHew4oM npauaIouleMcn ;IwKe. npeunonaraeTcfl, qT0 MOH~HO IIpeHe6peqb HK:lKOii 

~IICCl4na~Mefi, C*PlMaeMOCTbIO nOT0Ka II rpaBl4TaUl4OHIiOti IIOA%eMKOii CL'IOii. %lC.!Iefltlo 

pellIeHb1 COOTLleTCTByOlrlMe j.p3BKI?IiNPI IlOrpaHW~HOrO ('.!IOR ,!lJIfl nJI3CT#Hbl (HJIII &II('KA) I,~,,, 

H3OTepMWleCKHX ~CJIOtlllHX. 

:jTIl peWeHWl AJIfl 06OMX p?WlMOlI IIOTOKLL IIpefiCTaWIeHbI II Bllfle rpa@lKOH l4 Ta6JI~IIl ,,I“' 

pa:3JIe'IHbIX KOM6llIia~llHx TeMIIepaTyp IIJIafTllHbI I4 l’BO6OAHOrO IIOTOIia. TeopeTrrqecttrzt~ 

pe:l,V.?bTaThl ;[JIfl ql4CJIa HywenbTa Ha CTt'IlKe OnMCbIBaIOTCH C.ne;lyIOUPlMl4 BbI~a~eHLIKMLl 

Null?& = A Prk Pr!, me Re - 'llll'JI0 Pel?llNIbAt'a : Pr - cIIIC.JIO ~~paHtiT.-lfI 11 IlIl;It’KCI,I 

m, W- IIt~KZt:lblHLUOT,‘lTO CElOtiCTRa iKHAKOCTlI BRHTbl npll TeMIlepaTypP OCHOBHOrO IlOTOK;l 

II.lIl U'C'HKM, r00TBt=T('TBt'IIHO. 'I'3KH:P paWMaTpMB3eTrfl 14rnoJIh:1oBarI4Ie ~@I#I~KT~~BHI,Ix 

TeMnepaTyp, npu K~T~~MX HymlIO 0npcnenKTb xapaKTepl4rMTKM noToKa ~&I~~.K~(‘TLI 11pt1 

llt’llO.~b:1OHRHMII VOllt’JIli I1O~TOHHHI>lX t’IiOil(‘TB Wkl;(KOCTll JUIfI OIl~WJt‘Jt’llllfl Ii~~~t~~t~llfI(IlPIlToll 


