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THEORETICAL RESULTS FOR VARIABLE PROPERTY,

LAMINAR BOUNDARY LAYERS IN WATER
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Abstract—Numerical solutions are presented for laminar forced heat convection in water for two different
laminar boundary layer flow configurations. Experimental values (in the range 0-100°C) for the viscosity
conductivity, specific heat and density are used. First the laminar forced convection heat transfer from a
semi-infinite flat plate to a parallel stream is examined. Secondly the heat transfer by laminar flow about
an infinite rotating disk is analysed. It is assumed that viscous dissipation, work done against compression
and the gravitational buoyancy force are negligible. The relevant boundary-layer equations are solved
numerically for isothermal plate (or disk) conditions.

Flow and heat-transfer properties of these solutions, for both flow régimes, are given in graphical and
tabular form for several combinations of plate and free stream temperatures. The theoretical results for the
wall Nusselt number are correlated by expressions of the type Nu/Re* = A Pre, Prf, where Re is the
Reynolds number, Pr is the Prandtl number and the subscripts m and w indicate that main stream and wall
fluid property values are taken. Consideration is also given to the use of effective reference temperatures
at which fluid properties should be evaluated when a constant fluid property model is employed to deter-

mine wall heat-transfer coefficients.

NOMENCLATURE 0, mass flow per second;
A; B, C, D, coefficients [see equation (1.1)]; Re, = pu,x/u, Reynolds number;
a, radius of curvature [cm]; r,0,z, cylindrical polar coordinates;
Cpr specific heat at constant pressure T, temperature [°C];
[cal/gdegC]; u,v, velocity components for the plate
C,, dimensionless skin friction co- [em/s];
efficient ; u,, ug, u,,  velocity components for the disk
Cu dimensionless moment co- [em/s];
effictent for the disk; X, ¥, Cartesian co-ordinates;
Em’ = ui%l/‘,cp".(Tw - Tm)’
Eckert number; Y,
f.g.h, dimensionless velocity functions ; Y, - j P dy,
Gr, = gp(p., — p)X°/1?, J Pm
Grashof number;
k, thermal conductivity [cal/cms Howarth—Dorodnitsyn  y-vari-
degC]; able [see equation (29b)];
M, torque on disk ; R, Z, dimensionless r, z variables for
Nu, Nusselt number; the disk.
P, pressure;
P, dimensionless pressure;
Pr, = c, p/k, Prandtl number; Greek symbols
q, local heat flux; 7, constant ;
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0;.0,.0;, boundary-layer thicknesses for
the plate [see equations (2.19) to
(221)];

4., 4,, 4,, boundary-layer thicknesses for
the disk [see equations (3.12) to
(3.14)];

U, viscosity, [g/cms];

€, angle between resultant velocity
and zonal direction for the disk ;

Ty T205 shear stresses;

Q, angular velocity [rad/s];

6, =(T - T)(T, - T,),
dimensionless local temperature ;

o, = (T — 50°C)/50°C,
dimensionless scaled tempera-
ture;

0. dens1ty[g/cm

z
p
. _dZ’
1 <2u... ) f
0

dimensionless independent vari-
ables for the plate and disk[as in
equations (2.9a) and (3.2), respec-

tively];
Y, stream function.
Subscripts
iA liquid film condition;
m, main stream
w, wall condition;
r, reference condition.

1. INTRODUCTION

SeEvERAL theoretical studies now exist on the
determination of local and average heat-transfer
coefficients in liquids taking into account the
effect of variable viscosity. The major portion
of this work dealt with non-isothermal forced
convection flow inside vertical tubes. A brief
survey was given in Poots and Rogers [1]. In the
aforementioned report the fully developed
laminar forced convection to water between
heated vertical flat plates was discussed in
detail using experimental data (in the range
0-100°C) for the viscosity, conductivity, specific
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heat and density. The main effect of variable
fluid properties was on the mass flow and this
was primarily produced by the rapid variation
of viscosity with temperature. For example, mass
flow rates in the case of Couette flow evaluated
using the experimental data for water differed
by as much as 25 per cent from those evaluated
using a constant fluid property model based on
physical properties taken at the arithmetic mean
temperature of the plates. Discrepancies in the
case of Poiseuille flow were at most 16 per cent.
However, in [ 1] the heat flux across the channel
was constant and independent of the flow rate,
and so no new information was obtained on the
effects of variable viscosity, etc., on wall Nusselt
numbers,

It is the purpose of this report to examine
some non-isothermal laminar flows in water,
where there is appreciable coupling between
the momentum and thermal energy boundary-
layer equations. In view of the computational
difficulties incurred when due account is taken
of variable physical properties it is clear that
results can most easily be obtained on con-
sidering similarity solutions of these equations.
Thus in Section 2, the laminar boundary-layer
equationsare solved for the velocity and tempera-
ture distribution in the vicinity of an isothermal
flat plate aligned parallel with a uniform water
stream of infinite extent for several combinations
of plate and free stream temperatures. In Section
3 the rotationally symmetrical flow and heat
transfer in the presence of an isothermal infinite
rotating disk is examined. In both flow configura-
tions the momentum and thermal boundary
layer equations are supplemented by certain
fluid property relations for the density, specific
heat, viscosity and conductivity. Except at very
high pressures, or at conditions near the critical
point, these properties for water may be taken
as equal to saturated values at the appropriate
temperatures. The data for saturated values are
taken from tables compiled by Mayhew and
Rogers [2]. In cgs units these experimental
values are adequately represented, as is dis-
cussed in [1], by algebraic expressions in the
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form
10 ) 10 .
p= 4,0 =ZB,-@',
i=0 i=0
10 (L.1)
p=exp(3 C,

k= exp(lz D; @),

where @ = (T — 50°C)/50°C; the numerical
values of the A;, B;, C;and D, are listed in ref. [1].

2. THE BOUNDARY LAYER ON AN
ISOTHERMAL FLAT PLATE

Water with uniform free stream velocity u,,
and temperature T,, flows parallel to an iso-
thermal vertical flat plate, defined by y = 0,
x = 0, in the direction of increasing x; the plate
temperature is T,. Let u and v be the velocity
components in the x and y directions respectively
and T be the local temperature field.

The governing equations for conservation of
mass, momentum and thermal energy in the
resulting boundary-layer flow are, respectively:

0 3]
7 W)+ a—y(pv) =0, 2.1

ou ou 5, Ju
p(u o ay) - (u 5;), 22)
oT 6 é [, oT

Together with the fluid property relations (1.1)
the above equations (2.1) to (2.3) must be solved
subject to the boundary conditions:

and

T=T, u=p=0 ]
at y=0, x =0,
T=T, u=u,
at x =0, y=20, ¢ (2.4)
and
T-T, u—u,
as y— oo. J
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In equations (2.2) and (2.3) the gravitational
buoyancy force, viscous dissipation and work
done against compression have been neglected.
It can be shown qualitatively on examination
of the full equations of motion for a viscous
heat conducting compressible fluid that the
effect of the gravitational buoyancy force is
negligible if:

Gr,,
1, 2.
Re2 > < 23)
where the Reynolds number Re,, = p, X/ tim
and the Grashof number Gr, = gp,.(p,, — Pm)

x3/u2. Similarly the effects of viscous dissipation
and work done against compression are negli-
gible if:

pr,E, < 1, (2.6)

where the Prandtl number Pr,, = ¢, p,/k,.and
the Eckert number E, =ul/Jc, (T, — T,
For water, under realistic flow conditions, the
specifications (2.5) and (2.6) are satisfied for
moderate speeds and large temperature differ-
ences.
Upon introducing a stream function y de-
fined by
oy oy
puU = ppy, ay9 pL = Pm ax’
and the dimensionless temperature distribution
0 defined by:

(2.7a)

T-T,
Tm - Tw
the required similarity solution (see, for example,
Stewartson [3]) of the boundary-layer equations
(2.1) to (2.3) is in the form:

} (2.8)

¥ = (2 i U X/ p ) f(0),
0 = 6(n).

Here # is the Blasius similarity variable defined

by

0 = (2.7b)

N="Y (D thp/2 iy X)*, (2.92)
where Y is the Howarth—Dorodnitsyn variable:

[ 2

(2.9b)
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The velocity field is related to f by:

u=u,df/dy )

P § { Bt \P df
G (e
df (3Y
o0}

Accordingly equations (2.1), (2.2) and (2.3)
reduce to the following ordinary differential
equations:

and

U= > (2.10)

d (pu &\ 4 _
ot S0 e
and
d [ pk df c, ,do
— (- L f—=0 (2
dﬂ(l’mkmdﬂ) + Pr,, Cpmfdﬂ 0. (212)

The fluid property relations (1.1) take the simple
form:

p = p0;T,,T,), 1

¢, =cf0; T, T,)

po=ub; T, Tp) L (2.13)
and

k =k@;T,.T,).

where, for example:
10

p= Z Al{[Tw + (Tm - Tw)
i=0

x 0(n) — 50°C)/50°C}.
The boundary conditions are:
=df/dn=0=0 at =0,
f=df/dn n 214
df/dng— 1, n— oo,

To date (2.11), (2.12) subject to (2.14) have been
solved on the basis of a constant fluid property
model. It is not unreasonable to assume for quite
small temperature differences, (7,, — T,,), that
the physical properties of the liquid are indepen-
dent of the temperature. The relevant values can

-1 as
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then be taken at a suitable reference temperature.
If the free stream temperature is chosen as this
reference temperature equations (2.11) and
(2.12) are replaced by

[+ =0, 0" + Pr, f 68 =0, (2.15)
where the prime denotes differentiation with
respect to n. Details of the classic Blasius—
Pohlhausen solutions of (2.15) subject to (2.14)
are given in Stewartson [3] for Prandtl numbers
in the range 0-6 < Pr,, < 15. However, for even
moderate temperature differences the use of the
above type of model based on the reference
temperature T,, must lead to serious errors in
the prediction of liquid flow and heat-transfer
characteristics. For example, in the specific case
of water the Prandtl number is a monotonically
decreasing function varying from 13-621 to
1-737 in the range 0-100°C. Later in this section
it is shown that an accurate prediction for the
wall heat-transfer coefficient may be obtained
using a constant fluid property model based on
an effective reference temperature deduced
from the computed variable fluid property
results.

Solutions

Numerical solutions of the variable property
equations (2.11) to (2.14) have been obtained
for T, = 0, 10, 40, 70 and 100°C when T,, is
either 0, 10, 40, 70 or 100°C. The integrations
were performed using Gill’s modification of the
Runge-Kutta method. An iterative scheme was
used for the determination of the unknown
initial values f"(0) and €(0); these have been
rounded off to four decimals and are listed in
Table 1.

Velocity and thermal profiles

Representative dimensionless velocity pro-
files for the extreme cases (7,, T,) = (100, 0),
(0, 0), (100, 100) and (0, 100) are given in Fig. 1;
the associated temperature profiles are given in
Fig. 2. As the similarity variable n is defined
using the reference temperature T,, it is only



THEORETICAL RESULTS FOR LAMINAR BOUNDARY LAYERS IN WATER 601

Table 1

T, T, 17(0) g(0) 5,Ret/x 8,Ret/x 83Ret/x Nu/Re? C,Re?, Nu/C,(Re,,
0 0 04696 1-1421 1-7208 0-6641 1-0444 0-8076 0-6641 1-2161
10 06218 11916 1-5699 0-6442 1-0214 0-8425 0-6442 1-3080
40 1-1169 1-3194 1-2208 05743 09342 09258 0-5743 1-6122
70 1-6041 1-4361 09870 0-5032 0-8364 09929 0-5032 1-9732
100 2:0567 1-5534 0-8265 04396 07427 1-0523 0-4396 2:3940
0 10 0-3533 09757 1-8767 0-6820 1-0646 0-6900 06820 10117
10 04696 10130 1-7208 06641 1-0444 0-7163 06641 1-0786
40 0-8557 1-1157 1-3585 0-6006 09665 0-7829 0-6006 13036
70 1-2469 12124 11121 0-5339 0-8768 0-8383 05339 1:5702
100 1-6195 1-3117 09404 04725 07884 0-8886 04725 1-8808
0 40 01869 0-7001 2.2673 0:7269 111172 0-4989 07269 0-6863
10 0-2505 07196 21066 07137 1-1028 05127 07137 07183
40 0-4696 07753 1:7208 0-6641 1-0444 0-5482 06641 0-8255
70 0-7046 0-8358 1-4466 06079 09724 0-5823 06079 0-9578
100 09401 09016 1-2491 0:5526 0-8968 06155 0-5526 1-1138
0 70 0-1198 0-5645 2:5589 07637 1-1624 0-4083 0-7637 0-5346
10 0-1613 0-5744 2-:4007 07534 1-1514 04154 07534 0-5513
40 03075 0-6070 2:0090 07128 1-1048 04356 07128 06111
70 04696 0-6478 1-7208 0-6641 1-0444 0-4581 0-6641 0-6897
100 0-6370 0-6957 1-5066 06138 09780 04820 06138 07853
0 100 0-0851 04811 2:7803 0-7963 1-2037 0-3551 07963 0-4459
10 0-1149 0-4855 2:6279 07878 1-1949 0-3583 07878 04548
40 02215 05046 2:2400 0-7535 1-1562 0-3696 0-7535 0-4905
70 03423 05335 19452 07104 1-1039 03850 07104 0-5419
100 0-4696 0-5689 1-7208 0-6641 1-0444 04023 0-6641 0-6058

permissible to compare profiles with the same
Reynolds number Re,,.*

For the two velocity profiles specified by
T,, = 0°C and T,, = 0 and 100°C, respectively,
it is obvious that as the plate is heated (oras T,
increases) the coefficient of viscosity will be
reduced in that part of the boundary layer close
to the wall. The tangential shear stress exerted
by the plate on the adhering layer of fluid is

* Of course the velocity profiles given in Fig. 1 can be
plotted against an #, based on a different reference tempera-
ture T, where #, i Mu(Pmitm/prit,)%. 1f, for example, T, is
chosen as this reference temperature then the difference
between the variable fluid property profile and the related
constant fluid property profile (when T, = T,) becomes
much smaller near the wall than that which occurs in Fig. 1,
but becomes larger at the outer edge of the boundary layer.
Even if effective reference temperatures are introduced no
real advantages are to be gained in the graphical representa-
tion of the results.

decreased producing an increase in the velocity
component parallel to the plate (see Fig. 1).
Quantitative information on these trends is
also available in Table 1. For T,, = 0°C an
increase in T,, results in an increase in f"(0)
producing a steeper velocity profile and in fact
there is, as expected, a corresponding decrease
in the skin friction coefficient

ou
Cc Rei = Ky <_> /l mu;%. -
f ay =0 (2p )

An increase in velocity enhances heat transfer
by convection producing the observed increase
in the dimensionless temperature profiles for
(T,, T,,) = (100, 0) and (0, 0) as shown in Fig. 2.

In the second two velocity profiles with
T,, = 100°Cand T,, = 0and 100°C, respectively,
cooling the wall obviously produces a decrease
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FiG. 1. Dimensionless velocity profiles for the flat plate.

in velocity as implied by the fact that the shear
stress exerted by the plate increases with decreas-
ing temperature.

Again from Fig. 2 it follows that, for flows
with the same Re,, the thermal boundary-layer
thickness decreases with heating the plate.

It is, perhaps, interesting to point out that a
heated wall velocity profile, as in the case
T,, = 100 and T,, = O shown in Fig. 1, resembles
closely the shape of the velocity profile occurring
in an isothermal two-dimensional boundary
layer with favourable pressure gradient. Simi-
larly a cooled wall velocity profile, as in the case
T,, = O and T,, = 100 shown in Fig. 1, resembles
the type of velocity profile occurring in an iso-
thermal two-dimensional boundary layer with
an adverse pressure gradient. Moreover, in the
cooled wall profile there is a point of inflexion
indicating that this flow is probably unstable
even at large Reynolds number.

Boundary-layer thickness

It is useful to consider some overall measures
of the fluid boundary-layer thickness. These
are the displacement thickness:

5, =J(1 _ p"’; )dy, (2.16)
0

the momentum thickness:

0

52=J pU <1—i>dy, 2.17)
0

rafre
A

2

Y Pt /2 ¥ )
Fi1G. 2. Dimensionless thermal profiles for the flat plate.
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and the energy thickness:
pu

53=meum(l——ﬁ>dy'
0

In terms of the new variables f and @ in the
(x, n) plane the above quantities are transformed
to dimensionless form as follows:

(2.18)

o;Re} Pm p )
. (\/2)-[ ( —;)—;f) dn, (2.19)
0
%aRe L A
and
(53Re

(\/2)ff [1 - (f)*1dn. (221)

Note that the expression for §,ReZ/x as given in
(2.20) is derived from the definition (2.17) by
making use of the differential equation (2.11).
As in the constant fluid property flow model this

g

2:5-

fr, B, Renfr, ByRel

vz
m

3, A

F1G. 3. Boundary-layer thicknesses for the flat plate.

8, Ret/x, -~ — 8, Retfx,———— 83 Rel/x.
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result shows that there is a simple relationship
between the momentum thickness 6, and the
skin friction coefficient C,, namely, 6, = C,x.

Numerical values of §,Re}/x, §,Ret/x and
S3Rel/x are given in Table 1, and also in
graphical form in Fig. 3 for the extreme cases
T,, = 0 and 100°C, All these quantities have the
same general trend, i.e. for fixed Re,, (or T,,) they
decrease with increasing plate temperature.

The deficit in the actual mass flow rate due to
the effect of viscosity in the boundary-layer is
PmlimO1- It is interesting to compare some results
for this quantity, taking specified values of
T, and T,,, with the approximate results evalu-
ated using a constant fluid property model
based on a reference film temperature T, =
T, + T,,). Therelevant ratio p,u,6,/(08,) U=
114 and 0-87 for the cases (T,,, T,,) = (0, 100) and
(100, 0), respectively.

Shear stress
The local shear stress at the plate is:

ou P (Prittm)
Ry 5— = Uw— 2_-*
y 0 Pm U X,

"') u, [(0). (2.22)

The related dimensionless skin friction co-
efficient :

1,(8u/dy)o
301l

- W2 Pt f"(0)

C, = .
4 Pmbtm Rel,

(2.23)

Values of C,Ref are given in Table 1; as
expected there is a decrease in C fRe‘,%, as T, is
increased.

Heat-transfer relations
The characteristic quantity representing the

local heat transfer at the plate is Nu/Re?, where
the Nusselt number

oT
Nu=x<6y) /(T T

In terms of the dimensionless temperature
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gradient at the plate:
£y 9100,
Pm N2

values of this quantity are given in Table 1. The
local rate of heat transfer to the plate per unit
surface area is given by the relation:

Ret /Nu
q=—k, (T, — Tw)'—;‘ (}g};‘) (2.25)

The method of least squares gives the “‘best
fit” for the data on Nu/Re? listed in Table 1 as:

Nu/Ret = 0:3402 Pr04366 p,~009685 (3 5

with a r.m.s. error of 0-42 per cent. In the limiting
case when Pr,, = Pr,, expression {2.26) reduces
to Nu/Ret = 0-3402 Pr 3398 which is in reason-
able agreement with the classical Blasius—
Pohlhausen constant fluid property result
Nu/Re? = 0:3320 Pr}, as given by Eckert and
Drake [4]. Using numerical values of the
dimensionless temperature gradient 8(0) found
on integration of (2.15) for Pr,, = 1(1)14 gives,
for the constant fluid property model, the “best
fit” as Nu/Re} = 03334 Prd33%* with r.ms.
error of 0-04 per cent.

An alternative approach to the correlation
of the theoretical data for Nu/Re? is to deter-
mine effective reference temperatures at which
fluid properties should be evaluated when a
constant fluid property model is employed.
Let the model fluid have an effective reference
temperature T, = T, + T, — T,), with
0 <y < L It is required to find y such that:

Nu/Ret = (3334 Pr03394, (2.27

and to make the resulting error as small as
possible for all of the various wall and main
stream temperatures considered. On performing
the necessary computations it was established
that the cooled wall data can be represented by
{2:27) with y = 0-20 to within an accuracy of
+ 1-8 per cent. However, on examination of the
heated wall data the most probable value of y is
less than zero and this result is obviously un-
acceptable. This objection to the use of a

Nu/Ret = (2.24)
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constant fluid property model for correlating
data on Nu/Re? is removed by considering
correlations involving Nu/Re}, where Re, is
the film Reynolds number. Re-examination of
the data yields the result:

Nu/Re} ==0:3334 Pr033%%  (228)

where y = 0-60 for the heated wall results and
y = 0-69 for the cooled wall results, respectively.
The modulus of the resulting error in the use of
{2.28) for the particular values of y was less than
1'5 per cent for the complete range of wall and
main stream temperatures considered.

For completeness, the Reynolds analogy
factor Nu/C Re,, has been included in Table 1.

3. HEAT TRANSFER FROM A
ROTATING DISK IN WATER
The axisymmetric laminar flow about a
rotating disk situated in a large body of quiescent
fluid was first analysed by von Kdrman [5] and
Cochran [6], using a similarity solution which
is a solution both of the full Navier-Stokes
equations and of the appropriate boundary-
layer equations of the problem. Recently Rogers
and Lance [7] have investigated in more detail
the general problem of rotationally symmetric
flow of a viscous fluid in the presence of an
infinite rotating disk.
The heat transfer from such a rotating disk to
a model fluid with constant fluid properties has
been studied by Millsaps and Pohlhausen [8]
for Prandtl numbers in the range

05 < (¢,/c)Pr < 10;

Sparrow and Gregg [9] give numerical results
applicable to any Prandtl number. For gases
the effects of compressibility were examined by
Ostrach and Thorton [ 10] assuming a model gas
with Pr = 072 and a linear variation of viscosity
with temperature. A detailed review on the
rotating disk and allied mass- and heat-transfer
problems has been given by Dorfman [11].
The flow configuration to be studied is that
of an infinite circular disk in the horizontal
(r, O)}-plane rotating in water with constant
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angular velocity Q2 about the z-axis. The disk is
maintained at uniform surface temperature T,
and the bulk or quiescent fluid is at temperature
T,.. Asin references [5-10] the relevant similarity
solution is given in the form:

z = (Un/Pu?Z,

U, = (Qup/pn)*R F(Z),

ug = (Qu./p)*R G(Z), L (3.1)
u, = (Qun/pn* H(Z),

p = R P(2),

Z) =(T - T)AT, - T,). |

This similarity solution is valid provided the
buoyancy force, viscous dissipation and work
done against compression are negligible. On
examination of the full equations for a viscous
heat conducting compressible fluid it can be
shown that the effect of the gravitational body
force is negligible if:

Gr,/Ret < 1 (3.2a)

and, moreover, the effects of viscous dissipation
and work done against compression are negli-
gible if’:

Pr,E, < 1. (3.2b)

Occurring in (3.2) are the following dimension-
less groups: the Reynolds number Re,, =
P22/, the modified Grashof number

_ 3
Gr, = PP - Pl
Hm
the Eckert number:
Em _ rZQZ
J cp,,.(Tw - Tm)

and the Prandtl number Pr,, = p,c,, /kn.
In terms of the Howarth—Dorodnitsyn vari-
able:

(3.3)

20
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and the new variables:

f=F? P

h=—H,

m

g=G0, (34)
the governing equations expressing conserva-
tion of mass, momentum and thermal energy
become:

A+ K =0, (3.5)
(ﬂ’:ﬁ f') _freH—g (6
( “Z g’), =2y + hy, (3.7)
and o
(" k 0'>' = Pr, 2 hg, (3.8)
mKm Com

where the dash denotes differentiation with
respect to 1. The fluid property relations are
given by (2.13). The boundary conditions which
must be satisfied at the disk are

u, =0, ug = rQ2, u, =0, T=T,

and, in terms of the similarity variables (3.1) and
the new variables (3.3) and (3.4), these are
equivalent to:
fO =0, g0)=1,
h(0) = 0, 6(0) = 0.
At infinity, the fluid has both zero angular and

radial velocity and is at constant temperature
T,,, hence

f() =0, (o) =1 (3.10)

The dimensionless pressure gradient dP/dZ
can be evaluated from the equation:

+ iﬁi [ﬂ(h’ —

(39

g(o0) = 0,

P _,
dZ 7 putim

3pmdn

f )] — hi
once the solution of the system of differential
equations (3.5) to (3.10) is known. However, the
actual dynamic pressure change across the
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boundary layer is small and of O(u,2) and is
therefore negligible within the boundary-layer
approximation.

The above similarity solution contains the
usual features of boundary-layer theory. The
similarity solution is also applicable, within the
framework of boundary-layer theory, to the
flow in the neighbourhood of the nose of an
arbitrary solid of revolution rotating about its
axis of revolution in a quiescent fluid ; the surface
temperature is maintained at T, # T, the tem-
perature of the fluid, and the axis of symmetry
taken to be the vertical axis. In this flow con-
figuration the boundary-layer equations are as
given in [3], except that the meridianal momen-
tum equation must include the corresponding
component of the gravitational buoyancy force ;
the pressure along a normal to the surface is
now constant. If a is the radius of curvature of
the nose the condition for neglecting viscous
dissipation is given by (3.2b) with r = a;
however, the condition for neglecting the gravi-
tational buoyancy force as given by (3.2a) must
be replaced by

Gr,,

Re2 < L

where r = a.

The physical interpretation of the constant
fluid property flow governed by the Von
Kéarman similarity solution is well known. The
disk acts as a centrifugal pump. At any plane
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parallel to the disk (and lying within the
boundary layer) the fluid is moving in spiral
paths away from the central axis of rotation.
Consequently, to maintain conservation of mass,
there is a uniform normal inflow at the outer
edge of the boundary layer. In the following the
variable fluid property results obtained for
water are now discussed.

Solutions

The seventh-order boundary-value problem
(3.5) to (3.10), and including (2.13), has been
solved numerically by the method briefly de-
scribed in Section 2 for T,, = 0, 10, 40, 70, 100°C
with T,, = 0 and 100°C respectively. The un-
known characteristics f(0), ¢'(0), 6(0) and
hoo) have been rounded off to four decimals
and are listed in Table 2.

Velocity and thermal profiles
Dimensionless velocity and thermal profiles

for the cases (T,. T,) = (0. 100), (100, 100),
(0, 0) and (100, 0) are given graphically in
Figs. 4 and 5, respectively; Fig. 6 gives graphic-
ally the resultant horizontal velocity

ur = (u? + ud)t
and its angle

€ = tan" ! (u,/ug)
to the zonal direction.

On comparing velocity profiles having the
same Reynolds number Re,, it is seen from

Table 2

T, T, J'(0) g'(0) (0) h{0) A, Rei/r A, Reijr AyRel/r NuRe,* C,Rei/2n
0 100 0-1446 —-0-1328 05443 - 10105 0-0664 12224 02197 0-5681 —0-8790
10 0:1945 —-0-1766 05391 —1-0023 0-0658 1-1404 02140 0-5626 —0-8561
40 03109 —0-3225 0-5266 —0-9690 0-0629 09370 01939 0-5454 -0-7758
70 04154 —04718 0-5235 —09274 00587 0-7859 01731 0-5343 —0-6924
100 05102 —-06159 05278 —0-8845 00541 06725 0-1540 0-5278 —0-6159
0 0 0-5102 —0-6159 12810 —0-8845 00541 0-6725 01540 12810 —-0-6159
10 0-6088 —0-7878 12836 —0-8660 00522 0-6028 0-1442 1-2835 —-05771
40 0-8586 - 1-2770 12726 —0-8088 00543 0-4483 0-1160 1-2629 —0-4643
70 1-0676 —1-6880 1-2701 —0-7493 0-0383 0-3520 0-0935 1-2418 —03744
100 12673 —2:0397 1-2862 —-06933 00324 02889 00770 12322 —0-3083
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F1G. 5. Dimensionless thermal profiles for the rotating disk.

Fig. 4, for (T,, T,) = (0, 0) and (100, 0), that an
increase in the disk temperature produces a
decrease in zonal velocity. Obviously heating
the disk reduces the viscosity and so causes a

reduction in the zonal component of the shearing
stress exerted by the disk on the neighbouring
layer of fluid. Consequently, there is a reduction
in the centrifugal force induced by the disk
resulting in a reduction in the radial component
of velocity and also in the axial inflow at the
edge of the boundary layer. The resultant
horizontal velocity component, as seen from
Fig. 6. is now obviously decreased on supplying

1-0
08
06|
3|2

04

02

0-0

40°

30°}-

20°

10°

FiG. 6. Dimensionless tangential velocity U ,/rQ and angle e.

heat to the disk; moreover, the angle ¢ is
increased producing a more diffuse spiral motion.
Returning to Fig. 4 it is significant that as heat
is supplied to the disk the maximum radial
velocity, although reduced slightly in magnitude,
is located closer to the disk. Near the disk
heating produces a slight increase in axial
inflow, whereas at the outer edge of the boundary
layer there is an appreciable decrease since the
latter is controlled by the overall reduction in
radial outflow.

As seen from Fig. 5 the dimensionless thermal
profiles for the cases (T,, T,) = (0, 0), (100, 0)
nearly coalesce. This implies that wall heat-
transfer coefficients for the rotating disk are
insensitive to changes in T, for fixed T,,. Clearly
from equation (3.8) the shape or exponential
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decay of these profiles is determined primarily
by the fixed magnitude of Pr,. The observed
small decrease with increasing T, is evidently
due to minor local variations of the inflow near
to the disk.

Briefly, the actual trends, as in the cases (7,,,
T,) = (100, 100), (0, 100), for cooling the disk
are as follows. Cooling produces an increase in
the zonal shear stress at the disk leading to
increased radial outflow balanced by a corres-
ponding increase in the inflow. As seen from
Fig. 6 there are associated increases in the
resultant horizontal component of velocity and
moreover the spiral motion becomes more
compact. Once again the thermal profiles are
controlled by Pr,, and are insensitive to changes
in T,,.

Note that the mass of fluid pumped outwards
from one side of the disk per second (across a
semi-infinite cylinder of radius r, z > 0) as a
result of the centrifugal effect is

Q= 21tr(fpu,dr/
0

=7nr’p,QRe,*[— h(0)].  (3.11)

This quantity is also the actual mass flow per
second which flows axially towards the disk.

Boundary-layer thicknesses

The following dimensionless length scales
have been evaluated as measures of the fluid
boundary-layer thickness on the rotating disk.
These are:

o

(22 4y~ ezt [ 24 2
A;—“W n=rRe,* | f*dn, (3.12)
o )
pug/r -
4, = | pm(olzrdn = rRe,,,‘l’J‘g2 dn, (3.13)
) )
and
pu, U, i}
45 = = 1 . .
3 fperQZ dV[ r Rem ffg d’7 (3 14)
) )
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They are in fact associated with the total rate
of change of radial momentum across a cylinder
of radius r, the centrifugal force at radius r and
the rate of change of zonal momentum at
radius r, respectively. Numerical values of
A, Ret/r, A, Ret/r, A Rek/r are given in Table
2. As expected, these quantities decrease with
increasing T, for fixed T, and Re,,.

Torque and moment coefficient

The approximate torque on a finite disk of
radius r is now evaluated. The torque on one
side is:

M = —2n[rit,dr, (3.15)
0

where the zonal shear stress is:

o)
Tz0 = Hy 677 "20'

The dimensionless moment coefficient is de-
fined as

2M (P

= 2nRe, ¥ ——"g'(0).

C. =
M (D)

(3.16)
32'." 0Q2S

Values of C,Rek/2m are given in Table 2. When
T,, = 0°C and Re,, is fixed there is an overall
decrease of 50 per cent in C,, as T, increases
from 0 to 100°C.

Nusselt number
The Nusselt number is defined as:

Nu=r (B—T> AT, — T,).
62 z=0

The characteristic quantity
4+ __ pw ’
Nu/Re; = I—’— ')

is given in Table 2.
The method of least squares gives the “best

fit”’ for this data as:
Nu/Ret = 0-4187 PrQ 02861 py0-4048 (3.17)

withar.m.s. error of 0-22 per cent. for the constant



THEORETICAL RESULTS FOR LAMINAR BOUNDARY LAYERS IN WATER

fluid property model using 7, as the reference
temperature and computed solutions for
Pr,, = 1(1)14 the “best fit” was:

Nu/Re} = 0-4127 Pro 4404 (3.18)

with a r.ms. error of 045 per cent. The result
(3-17) is in good agreement with (3.18) when
Pr, = Pr,. Note that (3.17) indicates the weak
dependence of Nu/ReZ on Pr,,

Finally reference temperatures are proposed,
as in Section 2, for a related constant fluid
property model. The variable fluid property
data for Nu/Re} can be evaluated using constant
fluid property results, namely,

Nu/Re} = 04127 Pr2 4494, (3.19

where property values are taken at
’I;' = Tw + y(Tm - Tw)

with y = 041 for the heated wall and y = 0-44
for the cooled wall, respectively. The modulus
of the maximum error involved in the use of
(3.19) for both values of y was less than 0-3 per
cent for the particular wall and main stream
temperatures considered.

4. CONCLUDING REMARKS
In the previous two sections results have
been obtained on the effects of variable fluid
properties on flow and heat transfer in water.
These solutions of the laminar boundary-layer
equations are in fact variable fluid property
generalizations of well known constant fluid
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property similarity solutions. Section 2 has now
been extended to include solutions of the laminar
layer equations with an adverse pressure
gradient. By numerical integration of the relevant
partial differential equations it is hoped to
present information on the effect of variable
fluid properties on non-isothermal laminar
flows with boundary-layer separation.
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Résumé—On présente des solutions numériques pour la convection forcée laminaire de la chaleur dans de
I'eau pour deux configurations différentes de couche limite laminajre. On emploie les valeurs expéri-
mentales (dans la gamme de 0~100°C) pour la viscosité, la conductivité, la chaleur spécifique et la masse
volumique. On examine d’abord le transport de chaleur par convection forcée laminaire & partir d’une
plaque plane semi-infinie vers un écoulement parallele. On alyse ensuite le transport de chaleur par
écoulement laminaire au voisinage d’un disque tournant infini. On suppose que la dissipation par viscosité,
le travail de compression et la force volumique due & la pesanteur sont négligeables. Les équations corres-
pondantes de la couche limite sont résolues numériquement pour des conditions de plaque (ou de disque)

isotherme. = .

Les propriétés d’écoulement et de transport de chaleur de ces solutions sont données, pour les deux
régimes d’écoulement, sous forme de graphiques et de tableaux pour plusieurs combinaisons d¢ tempéra-
tures de plaques et d’écoulement libre. Les résultats théoriques pour le nombre de Nusselt pariétal sont

représentés par des expressions du type:

Nu/Ret = APri Pré,
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ol Re est le nombre de Reynolds, Pr est le nombre de Prandtl et les indices inférieurs m et w indiquent

que I'on a pris les valeurs des propriétés du fluide dans I'écoulement principal et 4 la paroi. On tiendra

compte aussi de 'emploi de températures de référence effectives auxquelles les propriétés du fluide

devraient étre calculées lorsqu’on utilise un modéle & propriétés constantes de fluide pour déterminer les
coefficients de transport de chaleur 2 la paroi.

Zusammenfassung—Numerische Lésungen werden angegeben fiir den Wirmeiibergang bei laminarer
Zwangskonvektion in Wasser, bei verschiedenen Anordnungen der laminaren Grenzschichtstrémung.
Fir die Zihigkeit, die Leitfahigkeit, die spezifische Wirme und die Dichte werden Versuchswerte (im
Bereich 0-100°C verwendet. Erstens wird der Wirmeiibergang bei laminarer Zwangskonvektion an
einer halbunendlichen, ebenen Platte, die parallel aggestromt wird, untersucht. Zweitens der Wirmetiber-
gang bei laminarer Strémung an einer unendlichen rotierenden Scheibe analysiert. Es wird angenommen,
dass die Dissipationsfunktion, die Kompressionsarbeit und der Auftrieb vernachlissigbar sind. Die
entsprechenden Grenzschichtgleichungen werden numerisch fir die isotherme Platte (oder Scheibe)
gelost.

Die Strémungs- und Wirmeiibergangseigenschaften dieser Lésungen beider Stromungsformen sind
in Diagrammen und Tabellen fiir verschiedene Kombinationen von Platten und Freistromtemperaturen
wiedergegeben. Die theoretischen Ergebnisse fiir die Nusseltzahl sind durch Ausdriicke von der Art
Nu/Ret = A4 Pr%, Prf, korreliert, wobei Re die Reynoldszahl und Pr die Prandtizahl darstellt. und die
Indices m und w angeben, ob die Eigenschaften des Hauptstromes oder der Wand zugrundegelegt sind.
Ebenfalls beriicksichtigt wurden effektive Bezugstemperaturen, bei welchen die Stoffwerte der Fliissigkeit
einzusetzen sind, wenn zur Bestimmung der Wirmeiibergangskoeffizienten ein Modell konstanter Fliissig-

keitstemperatur verwendet wird.

AHHOTAIMA—IIPEACTABICHD YHCICHHBIE PCUICHHA ,UIH BYX JIAMMHAPHBIX [OrPAHHYHBIX
C10€B PasiMYHON KOHQUIypanuu npM BBIHYMAEHHOH KOHBEKUMH B MOTOKe BOABL. KcHosib-
3YIOTCH IKCNEPMMEHTANbHBE 3nadenuA (B Auanasone 0-100°C) Baskoctu, Tenmonposoj-
HOCTIH, Y/[eJbHOM TemaoTh U HJAOTHOCTU. Bo-mepBbIX, HCCIIEJOBAJICH MEPEHOC TEIIA B JaMM-
HAPHOM FMOTOKE MPH BHIHYMAEHHON KOHBeKKUN OT NoavOecKOHEYHON NIAOCKON MJIACTHHB K
NapaLIesbHOMY IOTOKY. B0-BTOPHIX, aHANIM3MPOBAIICA MEPEHOC TENJIA JaAMUHAPHEIM TOTOKOM
Ha OeckoHeuHom Bpawawuiemca ucke. ITpeamosaraercs, 4TO MOKHO npenefpeys BABKOMH
anccunanueii, CRUMAEMOCTBI) MOTOKA M TPABHTALMOHHON NMOAbeMHON cuaoili. YucaeHuo
pellieHbl COOTBETCTBYIOLME YPABHEHUA IOFPAHUMHOTO CJI0H AJIA MIACTHHBL (WJIN AHMCKA) Nph
M30TepPMIUYECKHX VCJIOBHAX.

OTH PeieHns LI 000MX PeUMOB HOTOKA NpPEICTABIEHb! B Be rpaduion u Tabaniy npu
PABNEYHHX KOMOMHALMAX TEMIepaTyp TIacTHHB u cBoGojHoro noroka. Teopernueckne
pesyabTaTthl s uucna HyeceabTa na cTeHKe ONMCHIBAIOTCH CIIEVIOLIUMH BBHIPAMHEHHAMU
Nu/Ret = 4 Pry, Prf,, rae Re — wuncao Pejtnoaspca: Pr— uncqo Ilpawaris n ungexchl
m, w — JMOKAIBIBAIT, YTO CBOACTBA HUJIKOCTH B3ATH NpPH TEMNEPATYPe OCHOBHOTO MOTOKA
WM CTeHKH, COOTBeTCTBeHHO. Talsxe pacemarpuBdeTcst UCENoAb30BaHMe HPPHeKTUBHRIX
TeMIlepaTyp, Npu KOTOPBIX HYHHO OnpeueIATbh XAPAKTePUCUTHH MNOTOKA HUIKOCTH npw
HCHOAB3OBAHUN MOIeJH NOCTOHHHBIX CBOHCTB MKUIAKOCTH I onpegesaenus wongunmenrton

TEHTOONMECHA HA CTOHKE,



